Results from SMOG-1 PocketQube

Gábor Géczy
Budapest University of Technology and Economics

geczygabor@gnd.bme.hu

The father – MASAT-1

- The first Hungarian Satellite
- 1 U CubeSat (10 × 10 × 10 cm size)
- 998.5 g mass
- Designed and built by students and lecturers of Budapest University of Technology and Economics (BME)
- Development: 2007 2012, Launch: 13. 02. 2012
- 1062 days in operation
- Fully successful mission (Trigger for Hungary to join ESA)

SMOG-1, the successor

SMOG-1

- The next Hungarian Satellite
- Student satellite like MASAT-1
- PocketQube class (5 × 5 × 5 cm size)
- 250 g maximal mass (currently 150 g)
- Radioamateur (HAM) Satellite,
 HA5BME, 437.345 MHz (ITU, IARU)
- More scientific goals:
 - Primary mission: measurement of electromagnetic pollution (RF smog)
 - > Secondary mission: measurement of Total Ionising Dose

SMOG-1 mission – Spectrum analysis

- Huge emitted RF power from terrestrial TV broadcasting (DVB-T 430–830 MHz)
- This emitted power means wasted energy "electro-smog" and escapes to space
- It's a known effect, this power disturbs all satellite communications
- Nobody has published any measurements about this

Balloon experiments for testing the measurement system

Balloon experiment results

The received RF power form Budapest's main TV towers clearly outstanding

Structure

- Standard FR-4 PCBs with 4, 6 and 8 signal layers
- Electrical subsystems soldered on the PCBs
- 6 outer-, 5 inner boards
- Solar cells on the outer PCBs

Subsystems

- EPS-1 (MPPT)
- EPS-2
- OBC
- COM (+Spectrum)
- TID

Primary Electrical Power System (EPS-1)

- Generates usable electrical power from solar radiation
- Nearly 40 x 40 mm solar cells with 28.5 % efficiency
- MPPT algorithm for maximal power
- 300 mW mean output power (500 mW peak)
- Microcontroller based measurement system
- Light sensor, temperature sensor

SMOG-1 subsystems

Central Electrical Power System (EPS-2) SMOG-1

- **Energy distribution**
- Battery protection and management
- Voltage regulation
- Current sensing, limitation and short circuit protection with unique redundant limiters
- Over-, and undervoltage protection circuits
- Self control and diagnostics by the Power Control Unit
- Optimized for high efficiency (99 % peak efficiency)
- Consumption optimized control software

On-board Computer (OBC)

- Coordinates every subsystem on the satellite
- Schedule measurements
- Data storage in a 8 MB flash memory
- Microcontroller based subsystem with ARM Cortex-M4 core
- Consumption optimized control software
- RTCC (real time clock and calendar)
- Magnetometer

OBC and peripherals On-board payload system: Flash Motion Total Ionising Dosimeter memory sensor Regulated Unregulated energy bus energy bus On-board Current limiter computer **PCU** RC Solar panel RC, **RTCC** supercap Current Voltage SDC limiter limiter TID V-shaped RC sensor MPPT, dipole Battery **MCU Protection** Current COM limiter **Primary EPS** Central EPS Spectrum broadband analyzer dipole Communication

Total Ionising Dosimeter (TID)

- The world's smallest dosimeter (~13x13 mm)
- 0-40 krad measuring range
- Negligible consumption (1 mW average used DC power)
- 600 km LEO: estimated to 11 krad/years total ionising dose
- ~2-6 years lifetime

COM (& SP)

Contains the communication system (COM) and the spectrum analyzer (SP)

- Spectrum analyzer
 - 119 960 MHz frequency range
 - -10 ... 120 dBm dynamic range
- COM: connection between ground station (GND) and SMOG-1
 - 437.345 MHz amateurs will able to track and receive all transmissions worldwide
 - +20 dBm (100 mW) RF transmit power to communicate

SMOG-1 Ground Control Station (GND)

- Automated primary control station at BME
- Secondary control station at Érd
- Unique software client designed for tracking and support

RadFET1 REGIFET1 Vth: 1988280 WV RadFET2 RadFET2 Vth: 1987145 uV Dosimeter Dosimeter Temp: -57 C t: 94 m t: 107 m RadFET1 RadFET1 Vth: 1988335 uV RadFET2 RadFET2 Vth: 1987177 uV Dosimeter Dosimeter Temp: -57 C t: 95 m t: 108 m RadFET1 RadFET1 Vth: 1988411 uV RadFET2 RadFET2 Vth: 1987234 uV Dosimeter Dosimeter Temp: -57 C t: 96 m t: 109 m RadFET1 RadFET1 Vth: 1988468 uV RadFET2 RadFET2 Vth: 1987350 uV I A Long and it is the unit and an arrangement of the state of the sta

Launch, Orbit

- Scheduled launch at Q4 2017
- Orbiting with the aid of GAUSS team's UniSat-7 satellite
- 600 km (LEO) SSO
- 5-23 years lifetime
- 2-4 opportunities/day for communications with the ground station (GND)

www.gnd.bme.hu

facebook.com/smog1official geczygabor@gnd.bme.hu hermantibor@gnd.bme.hu

